148 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-20, NO. 2, FEBRUARY 1972

Attenuation Due to Ohmic Losses in
Periodic Dipole and Slot Arrays

NOACH AMITAY, MEMBER, IEEE, AND HENRY ZUCKER, MEMBER, IEEE

Abstract—The analysis of the attenuation due to ohmic losses in
periodic linear arrays of metallic cylinders, ribbons, and slots in a
metallic ground plane is presented.

Calculations indicate that the loss per unit length of the ribbon and
cylinder arrays is comparable to that of a standard rectangular wave-~
guide operated in the TE, mode. With a proper choice of parameters,
the loss per unit length of the slot array can be brought to within a
factor of 2 of that of rectangular waveguides.

I. INTRODUCTION

ECENT THEORETICAL and experimental in-
R vestigations [1]-[8] have shown that a periodic
linear array of cylindrical- or ribbon-shaped
metallic elements (Fig. 1) may be used as guided-wave
transmission lines, filters, and resonators.

Fig. 2(a) shows an array of slots in a thin and con-
ducting infinite ground plane. This slot array is the
electromagnetic dual [9] of the ribbon array of Fig.
1(b). The electromagnetic fields of such surface waves
decay exponentially away from the slots in the x and ¥
directions. Therefore, for a sufficiently large distance /
(typically few wavelengths) from the edge of the slot,
the infinite metallic ground plane can be replaced by a
strip of width (2/-+2%) (see Fig. 2(b)) without affecting
the surface-wave propagation.

The potential use of these periodic structures as
transmission lines, filters, resonators, etc., depends to a
large extent upon their attenuation characteristics due
to ohmic losses.

In this work we shall evaluate the relative power loss
per unit length in the conducting cylindrical and ribbon
arrays shown in Fig. 1, and the slot array of Fig. 2(a).
The dispersion characteristics and the currents in these
structures that are utilized here are based on previous
analyses with the simplifying assumptions therein. The
electromagnetic fields are obtained under the assump-
tion of perfectly conducting metal, with the ohmic losses
calculated as a first-order perturbation. [10]

A harmonic time variation of exp [—jwt] is assumed
throughout this work.

II. Tae CoNDUCTING RIBBON ARRAY

A. General Formulation

For a wave propagating in the +3z direction and
bound to the structure of Fig. 1(b), a current sheet
I(x, 2) will be induced on the metallic strips. This cur-
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Fig. 1. (a) Array of conducting cylinders. (b) Array

of conducting ribbons.

rent sheet will have x and 2z components on the strips,
and vanish outside the strips. Utilizing Floquet’s
theorem [9] for this periodic structure, we can express
I(x, 2) as

2mw

Y L) exp (Bui),  Bn=B— T (1)

m——co a

I(x,2) =

with 8 being the z-directed propagation constant and
with I(x, 2)=0 over |x| >h or |2z >a in the periodic
cell defined by — o <x< »; —d/2<2z<d/2. The vector
Fourier coefficients I,, are given by

L.(x) = &1, (x) -+ 21m. (%)
1 a
= ;f I{z, 3) exp (—7Bmz)dz (2)
where £ and £ are unit vectors in the x and z directions,

respectively. We relate the magnetic field H, and the
electric field E to the vector potential A by

1 1
H=—VXA
u
1
E = jo [A —I—EVV'A:H 3)

employing the Lorentz gauge. Utilizing the free-space
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(a) Slots in a thin and infinite ground plane. (b) Finite slot

array. (c) Alternative finite slot array.

Green’s function [9] and the Poisson summation for-
mula [11] we can relate [4] the vector potential to the
current sheet by

o o0 h daf2
CLE L
27rdZ a2

M=—o00 T=h Z=—

exp (jBn(z — 7))

Kolamv/ (& — a2 + 32 |I(x', &)dx'ds  (4)

with o, = [(8— 2mm/d)?—k2]¥2, k=27 /N being the free-
space propagation constant, and K, denoting the modi-
fied Bessel function of the second kind. For a bounded
loss-free wave, all {am} are real, i.e.,

|8 — 2m1r/d[ > k, for all m. 5)

Substituting (2) in (4), we obtain

A=y

2T o

h
€xp (]:Bmz) Ko[am'\/(x - x,)2 + y2]
—h

A& a2’y + 8L (x')}da'.  (6)

The behavior of A (and thereby the electromagnetic
field) far away from the ribbons is given by the asymp-
totic expansion of K, for large arguments. The decay of
the mth term in (6) is essentially exponential.

Using the convolution (Faltung) theorem, [11] we
can rewrite (6) as

exp (—vam? + 2] y])
Vom? + 8
A #a() + 8D} exp (—jtw)dt  (7)

A= 3 e (e [

'\/8 T m=—x t=—c0

with the following definition of the Fourier transform

1 = o
Ima(t) = ﬁf_wIW(x) exp (jtx)dx = F{Lu(x)}. (8)

We shall assume that both 8 and I(x, 2) have been
properly calculated such that E,=2%E,+2E, vanish on
the metallic strips.

B. Power-Loss Relationships

To obtain the ohmic loss per unit length we shall as-
sume that the thickness of the ribbon is a few times the
skin depth and that the power carried by the bounded
wave P, is constant over a unit cell. The latter is a
reasonable approximation when the losses per unit cell
P, are reasonably low [10]. We define

1 Py

==t )

P, = 10p, logyo ¢{dB/unit length}, -5

Under the previous assumptions and the fact that

Ht[y=0=0 outside the metallic ribbon, we can express
Pyas [9], [10]

1 h a/2 2
Pd = 2 {—‘f f ‘ Ht ly=0dede}
2 z=—h z2——d /2

oo
R, = /‘/E;

with ¢ being the conductivity of the metal. The power
carried by the bounded wave is

1 0 o0
P, = —Z—Re {f f EXH*-ﬁdxdy}. (11)

Le=—o0 ¥ Y=—o0

(10)

For a bounded wave (i.e., all a,, are real), it is shown
in the Appendix that the electromagnetic fields in-
herently conserve energy and P, is constant.

C. Power Loss in Narrow Ribbons or Thin Cylinders

If a/hk1, corresponding to narrow ribbons or thin
cylinders, the current and the vector potential have es-
sentially an x-directed component only [3]-[6]. We
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shall further assume [6] that the current I, can be ex-
pressed by the following product form

I = F@GE) = F() Y gn exp (j8a),

_ 2mar (12)
B =B 7
Setting /.,=0 in (39), we obtain
© (& — )| fQ) |
| g |2 — e d (13
2 T alel | ot 0

mbw

where f(f) is the Fourier transform of F(x). Utilizing
(9), (10), (12), and (13), we obtain the relative power
loss p. as
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The electromagnetic field can be derived from (15) and
(16) with a proper gauge [9] or, alternatively, [9] by
replacing in (3) A by A,, E by H, H by (—E), and u by
e. The boundary conditions must also be interchanged.

B. Power Loss tn the Narrow-Slot Array

Again, we shall assume narrow slots a¢/h<<1, and that
the ground plane is a few skin depths thick. With I* be-
ing similar in form to [, in (12), we obtain P, by duality
from (13) as

D? e
P, =— —Z(ﬁd—Zﬂr)lgnl?

8 M ope——o
.fw (1 =~ 99| f(ky) |
—w |(Bd — 2um)2 4+ D2(y* —

o ® (7)

SR, <% f_h | Fx) lgdx> mfi | gm|?

pr=

D2/ ufe Z (Bd—2MT)|gm|2f

m=—co

with D=*kd and i=*Fky.
I111. THE SLOT ARRAY

A. Analogous Formulation

As was previously stated, the slot array of Fig. 2(a) is
the dual structure of the ribbon array of Fig. 1(b). We
replace the vector potential A by A,, which is related to
the electric field by

1
E=—VXA,.

€

(15)

The vector potential is related to a fictitious magnetic
current sheet I* in the slot by

14
A — )| fey) 2 s

[(8d — 2mm)® + D*(y* — D]*1

The power loss per unit cell is

0 aj/2 _
Py = Rsf f CVH 2+ | B2 dads.
—o0 ¥ —d/2 y=0

Using the appropriate dual expressions of (33) in the
equation for P, and the identity B.2=an?+2+ (B2 —12),

one readily obtains
2 «©
JIECE

Pd:ed&{i | gn|
+ 3 b

4y i, R
m=—a

N —dt} (18)

Substituting (17) and (18) in (9) and utilizing Parseval’s
theorem, we obtain the relative power loss p; as

(19)

dF(«) (1 = 99| f(y) |?
> gl d+DZkZIgm}f — y
, 1 Py 2R, Pt —en [(8d — 2mm)? + D(y2 — 1)]
: P B f (=) [ JGy) |2
D2 - d— 2 n
’Ve néﬁ el ) [Gi = ammy+ oGr D
€ =]
A=— 3 with P, =10p, logi, e{dB/unit length}. The ratio of the
27 e \ power losses per unit length of the ribbon and slot ar-
-exp (48.2) Koo/ (v — 2) F 32 Le(2)ds’.  (16) rays is therefore
—h
_ s _ P
T,
1 [ *dF(x)]? [ ® {l » f°° 1—-y
w |2 |+ D% m |2
R i | m:{‘w & mz’w 5] L (Bd = 2mm) + D2 — D]

(20)

L[:il r@ s | 3 |l ]
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In (14), (19), and (20), if sharp edges are assumed,
the expressions for the currents in the metal have
singularities that are nonsquare integrable with

. 1
im I gmlzw—- .
m—® n
Thus the first term in the numerator of (20) diverges
while the second term is finite. Even if the edges are
rounded, the second term is likely to be much smaller
than the first. Therefore, we shall approximate (20) by

h
s |
Ps ~ h

2

dF (x) i

dx

(21)

g =

br fth(x)]2dx

IV. EvaLvuaTiON OF THE POoweR Losses 1N RiBsoN
AND SLOT ARRAYS

As seen from (14), p, is dependent on the current dis-
tribution and propagation constant 8§ which has been
studied previously [3]~[7]. Despite the different for-
mulations and assumptions, these results show similar
characteristics and can be used to obtain useful informa-
tion for our purposes. Present data are restricted to the
lowest order mode of the structures.

The current sheet in the ribbon array is of the form of
(12), and is taken as [3], [6], [7]

2
I = (cos kx — cos kh)
27z 27a
Co§ —— — €08 —
d d
-exp (j(Bd — m)(s/d)),
for |x| <k and |z]| <a (22)

This current satisfies the edge conditions, i.e., I(x= F &)
=0 and

lim I~ (a — [ zl)"”z.
lz}—a

For this current, we find [6], [12]
F(x) = cos kx — cos kh

27a
Py (cos 7), m >0

27a
[ P (cos —-—), m <0
{ a

where the P,, are Legendre polynomials.

In order to avoid the singularities of the current at
z= Ta, we shall assume that these edges are rounded in
the shape of a semicircle of radius 6a, as shown in Fig. 3.
While the z variation of the current follows (22) in the
interval —a(l —8)<z<a(1—20), the current along the
semicircles is assumed to be constant and equal to the
current at 2= (1 —8)a. In this representation, §=1 cor-

(23)
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Fig. 3. Ribbon array. Current sheet distribution in the z direction.

responds to the cylindrical conductor array with uni-
form current distribution. We calculate the power loss
per unit cell from (10) and (22) as

R.hd
Pd == ‘M2M3
2

(24)

with Ms=2-4 cos 2H —3 sin 2H/2H, H=Fkh, uy=2wa/d,
and

Moa 1

cos [#o(1 — 8)] — cos u,

T
M3='— )
2 Sin g

(1 4 cos ug) tan [ﬁ?ﬂ 1 - 5)] —+ sin #,

-In

(1 + cos %) tan l:%q 1 - 5):' — sin 2

We obtain P, from (13) and (23) as

2D n
P, = ——— M, 1/ —
4h%r €

(25)
with

> lem

Mm=—c0

My = 2(8d — 2m)

sin Hy sin H?
cos H————— — cos Hy
Hy H

e dy-
fo (1 — ) [(8d — 2mm)* + D2(y> — D"

The relative power loss per unit length is therefore

1 R, 2eM o M;
P" = -

A 1/ . HDM,
€

(26)
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Fig. 4. Ratio of relative loss between the slot and ribbon array

versus &/,
For the slot array of Fig. 2(a), we utilize (21), (23),
and (26) and obtain '

1 — sin 2H/2H
24+ cos2H — 3sin2H/2H

PS = ﬂPr; Wlth n =

Fig. 4 shows 5 versus #/\. In the propagation band of
the lowest order mode (i.e., /N <0.25), the narrow-slot
array is lossier than the ribbon array.

A further and more instructive comparison can be
made with the TE; mode in standard-rigid-rectangular
waveguides for which the power loss per unit length
is [10]

P, = 10p,logo e{dB/unit length}

6.32 15.33 . —
TRS/‘\/,LL/G S Puw S "_A—RS/\/M/G'

(28)

Note from (26) and (28) that the losses in the ribbon
and slot arrays and the dominant waveguide mode have
the same frequency scaling characteristics.

To compare the relative losses of the various arrays,
we define the excess loss factors above the minimum
loss per unit length of rectangular waveguides as

Pr

Rs
6.32 —

A

L, =

u
€

Ly = qL,. (29)

An important parameter in the analysis of the
bounded (slow) wave structure is the ratio of the phase
velocity of the bounded wave to the velocity of light,
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Fig. 5. Excess loss factor L, for the ribbon array. h/d=4; 2e¢/d
=0.415, Corresponding values of v/¢ are in brackets.
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Fig. 6. Excess loss factor for the slot array. h/d=4; 2a/d=0.415.
Corresponding values of v/¢ are in brackets,

v/c. The propagation constant of the bounded wave 8
is related to v/c by Bd=Fkd/(v/c). We shall utilize pub-
lished values [3]-[6] of /¢ in various structures and
calculate the corresponding excess loss factors from (29).

Fig. 5 shows the factor L, plotted as a function of #/A
for various ribbon geometries (see Figs. 1(b) and 3).
The dispersion characteristics were taken from Ivanov
[6] and are assumed independent of 8. As can be seen,
L, increases with decreasing v/¢. L, also increases with
the sharpness of the edges (lower values of 8). For a
given value of v/¢, the lowest losses are incurred by the
metallic cylinder array (6 =1). As can be seen, the losses
of the ribbon arrays are comparable to the losses in
standard rectangular waveguides. The shaded area in
this and subsequent figures has been inserted for illus-
trative comparison with the standard rectangular wave-
guides. Note that, in contrast to standard rectangular
waveguides, the losses increase with frequency within
the operating band.

Fig. 6 shows the excess loss factors of the correspond-
ing slot arrays obtained by (27) and (29), which show
that the losses per unit length are somewhat higher for
this structure.
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Fig. 7. Excess loss factor for metallic cylinders array. d/x =0.2.
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Fig. 8. Excess loss factor for metallic cylinders array. a/h=0.05.

Corresponding values of v/c are in brackets.

Figs. 7 and 8 show the dependence of L, (or metallic-
cylinders array) upon the parameters a/k and d/N. For
a given value of v/¢, L, increases with decreasing values
of a/h, while L, decreases with the decreasing values of
d/\ (or D). The values of v/c were taken from Mail-
loux’s [3] curves.

In the numerical computation of P, in (25), we have
observed that the zeroth-order (m=0) mode carried
practically all the power of the bounded wave. There-

153
fore, we can approximate M, by
2 v/¢ 2
o Bl
D?
sin Hy sin H7?
cos H — cos Hy —*——:I
Hy H
dy.  (30)

3/2

1

From (24) with §—1 and low values of #,, we obtain
My~2w/u¢=d/a. Utilizing these results in (26), we ob-
tain
D
—Z
(v/c)%a/h

with Z being a function of H and not a very sensitive
function of the parameters a/k, D, and v/c. Although
(31) is a very approximate formula, it nevertheless in-
dicates the proper relation and range of the various
array parameters. Such a formula can serve as a guide-
line in exploring the proper combination of parameters
that will minimize the relative power losses.

~

(31)

V. CONCLUSION

In this work we have developed the necessary for-
malism for the evaluation of the relative power losses
in ribbon and slot arrays. The losses in these structures
obey the same frequency-scaling characteristics as
rectangular waveguides operated in the dominant mode.
The losses of the cylinder and ribbon arrays are found
to be comparable to rectangular waveguides. With a
proper choice of parameters, the losses in the slot ar-
rays can be brought to within a factor of 2 of the losses
in rectangular waveguides. Additional reductions of the
loss are desirable and may possibly result from special
shaping of the slots (or ribbons) and specific choice of
array dimensions.

Clearly, there will also be attenuation due to power
scattered by deviations from the ideal periodic geome-
try. However, whereas the latter can be reduced by
greater care in manufacture, the ohmic losses represent
a more intrinsic limitation.

APPENDIX

PowER CARRIED BY THE BOUNDED WAVE
IN RiBBON ARRAYS

The electromagnetic field is obtained from (3) and
(7) as ‘

Ho=— 3 exp (i) [ lnexp (—an] 3]) exp (=it {_1’ 7> 0
z = == €xX m mz EX —am exX — 11X .

VB, L, PV ) e ST SR <0

P> O exp (—am| y|) )
Hy=—— 3 exp(jfn2) f [Bukme + tlmz]—B—Ly-l‘eXP(_ft”)d‘
\/87"m=—w — Am
1 o 0 '—"1, > 0

H,=— -ngexp (]lng) f-wlmzexp <—am| yl) exp (_]tx)dt ) { 1, ;]< 0 (32)
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exp (—am| 3]) .
E, = > exp (j6n2) f et — /82 + Bt/ ] o P o (—jta)dt
’\/81T prr—y am
@ - . . —1, y>0
e —"—mk% exp (820) [ [t = pulelexp (an D esp (=g - {777

exp (—am| ¥|)

T m=—o —c0 m
where an=Va,2+¢? and I,; and /., are functions of the With
transform variable &. 8 o —a 8 g 1
The power carried by the bounded wave at plane 2 is - m = ° + - ——
2 e (am - an) = Om -
. . Brm + Ba B+ Bn  Bmt Ba
= Re {ff_ [E.H* — Esz*]dxdy} . (34) and
Upon the substitution of (32) and (33) in (34), and in- (kz = . 1> Am — Qn
tegrating witb respect to x and v, we obtain Amln B+ Ba
exp ](Bm Bn)z] (iGnZ - ang) Bm2 - dm2 Ay — Qp
Yre[ TT _ _ _
—e0 n——0 am + an dn(ﬁm+5n) am(ﬁm + Bn) B+ 8n
Bn k2 - t2 m tz n2 mMn m
: {’—( D s 4 B <1 + ) bnsbos® __ Bubn _ bm
Elaman k? Amn an (,Bm"'_ﬁn) am(ﬁm + 6n) Am
i i I:]ez — 2 :l Lk L B_,n& L Z*} di. (35) We obtain from (36) after discarding the imaginary
L aman e B G terms

—jop [](/Bm

— Ba) ZI]

f dtf dzZEeXp

M, P ~-00

P—P]L-}—Re[

ka,

(B = Ol + (2 — am2)zmzm*+ﬁmt<lmlnz*+zmzzm*)}]. (37)

With
1 . j(am — @)
22 '+' an B (,gm + Bn)j(ﬁm - Bn)
and
. = + | exp [1(8n — B¢ |d5

we obtain from (35)

m,n=—c0

2

)

Amy

lmzlnx* + ﬂm <1 + -

ot Re[] ﬂf dtf dz’ ZZGYP 7 (Bm — Ba)7']

t k2 — 1 mPn
>lmzlnz* 'l_ t(—__ - 1> lmzlnz* + tB 6
Amp Amn Al

Using (32) and (33), (37) is reduced to

1 h z
+2 {— Ref f EXH*-9dxd7 } . (3%
2=0 2 2.2 0 y=0

Since E; vanishes on the metallic strip, P, is independent
of z. By setting m =# in (35), we obtain P, as

dtz

Moo B2m?

P,=P,

W
P, = constant = ; Re

—02

B[k — ) | lnma |2+ (@n® + 1) | #me |?]

+ 1k — 2 = @D lnalms* + Butldma*} . (39)
(@ — ax)
(B + Bu) k2

zmzlm*} ] (36)
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Microwave Integrated Oscillators for Broad-Band
High-Performance Receivers
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AND ROBERT H. PFLIEGER, MEMBER, IEEE

Abstract—The design and development of a variety of microwave
integrated circuit oscillators for use in integrated broad-band high-
performance receiving systems is described. Examples of various
thin-film microstrip oscillators directed to this application are pro-
vided including: 1) fixed-frequency Gunn-effect oscillators covering
Cto K, band; 2) X-band varactor-tuned Gunn-effect oscillators pro-
viding up to 15 percent tuning bandwidth; 3) S-band step-tuned tran-
sistor oscillator assembly with better than half-octave digital tuning
range; 4) L-band varactor-tuned transistor oscillator with almost an
octave tuning range.

I. INTRODUCTION
THIS PAPER describes the design and develop-

ment of a variety of microwave integrated circuit

(MIC) oscillators for use in integrated broad-
band high-performance receivers. The role of these os-
cillators in such receivers, the impact of MIC technol-
ogy on their construction, and specific embodiments of
MIC oscillators operating from L to K, band are in-
cluded.
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II. GENERAL AsprcTs oF MIC OscILLATOR DESIGN

The application of MIC oscillators to broad-band
high-performance receivers is primarily as electronically
tunable local oscillators for repetitively swept [1],
step-scanned [2], [3], or adaptively tunable super-
heterodyne receiver channels. Of the various oscillator
types relevant to this application [1]-[8] in the L- to
K.-band frequency range, those which will be de-
scribed here include:

1) Fixed-frequency C- to K,-band Gunn-effect os-
cillators, which are designed for incorporation in a
corporate-switched combining array. This configura-
tion, therefore, constitutes a digitally addressed step-
tunable C- to K,-band LO assembly for step-scanned
superheterodyne receiver application.

2) Digitally addressed S-band step-tuned transistor
oscillator-driven LO assembly for step-scanned super-
heterodyne receiver application. A switched reactive
array constitutes the digitally tunable resonator for the
step-tuned transistor oscillator.

3) Varactor-tuned X-band GEOs which serve as
continuously tunable LOs for adaptively tunable super-
heterodyne receiver applications.

4) Varactor-tuned L-band transistor oscillator for



