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Attenuation Due to Ohmic Losses in

Periodic Dipole and Slot Arrays

NOACH AMITAY, MEMBER, IEEE, AND HENRY ZUCKER, MEMBER, IEEE

Abstract—The analysis of the attenuation due to ohmic losses in

periodic linear arrays of metallic cylinders, ribbons, and slots in a

metallic ground plane is presented.
Calculations indicate that the loss per unit length of the ribbon and

cylinder arrays is comparable to that of a standard rectanguhm wave-

guide operated in the TEN mode. With a proper choice of parameters,
the loss per unit length of the slot array can be brought to within a
factor of 2 of that of rectangular waveguides.

1. INTRODUCTION

R

ECENT THEORETICAL and experimental in-

vestigations [1 ]– [8 ] have shown that a periodic

linear array of cylindrical- or ribbon-shaped

metallic elements (Fig. 1) may be used as guided-wave

transmission lines, filters, and resonators.

Fig. 2(a) shows an array of slots in a thin and con-

ducting infinite ground plane. This slot array is the

electromagnetic dual [9] of the ribbon array of Fig.

1 (b). The electromagnetic fields of such surface waves

decay exponentially away from the slots in the x and y

directions. Therefore, for a sufficiently large distance J

(typically few wavelengths) from the edge of the slot,

the infinite metallic ground plane can be replaced by a

strip of width (21+ 2?2) (see Fig. 2(b)) without affecting

the surface-wave propagation.

The potential use of these periodic structures as

transmission lines, filters, resonators, etc., depends to a

large extent upon their attenuation characteristics due

to ohmic losses.

In this work we shall evaluate the relative power loss

per unit length in the conducting cylindrical and ribbon

arrays shown in Fig. 1, and the slot array of Fig. 2(a).

The dispersion characteristics and the currents in these

structures that are utilized here are based on previous

analyses with the simplifying assumptions therein. The

electromagnetic fields are obtained under the assump-

tion of perfectly conducting metal, with the ohmic losses

calculated as a first-order perturbation. [10]

A harmonic time variation of exp [ –jcot] is assumed

throughout this work.

II. THE CONDUCTING RIBBON ARRAY

A. General Formulation

For a wave propagating in the + z direction and

bound to the structure of Fig, 1 (b), a current sheet

1(x, Z) will be induced on the metallic strips. This cur-

Manuscript received February 19, 1971; revised April 26, 1971.
The authors are with Bell Telephone L.ab~ratories, Inc., Whip-

pany, N. J. 07981.

r’ /’

(a)

z

Fig. 1. (a) Array of conducting cylinders. (b) Array
of conducting ribbons.

rent sheet will have x and z components on the strips,

and vanish outside the strips. Utilizing Floquet’s

theorem [9] for this periodic structure, we can express

l(x, z) as

with ~ being the z-directed propagation constant and

with 1(x, Z) = O over I xl >h or I z] >a in the periodic

cell defined by — w <x< w ; —d/2 <z<d/2. The vector

Fourier coefficients Im are given by

L@) = ivmz(x) + .21mz(x)

1“
—— -s I(fi,z) exp (–~f?~z)dz

d -.
(2)

where & and 2 are unit vectors in the x and z directions,

respectively. We relate the magnetic field H, and the

electric field E to the vector potential A by

H= LVXA

1

[

E=jk A+; VV. A 11 (3)

em~lovirm the Lorentz ~au~e. Utilizing the free-space
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Fig. 2. (a) Slots in a thin and infinite ground plane. (b) Finite slot
array. (c) Alternative finite slot array.

Green’s function 191 and the Poisson summation for-

mula [11] we

current sheet

can ~e~ate [A] the vector potential to the

by

h d/2

A=$d~ Ss exp (j~~(z – z’))
m=-cc x—-h z--d 12

“ KOICYW’(X – *’)2+ yz]l(x’, Z’)dx’a!z’ (4)

with am= [(~ — 2m~/d) 2— k2 ] 112, k = 27r/h being the free-

space propagation constant, and KO denoting the modi-

fied Bessel function of the second kind. For a bounded

loss-free wave, all {am } are real, i.e.,

Substituting (2) in (4), we obtain

The behavior of A (and thereby the electromagnetic

field) far away from the ribbons is given by the asymp-

totic expansion of KO for large arguments. The decay of

the tnth term in (6) is essentially exponential.

Using the convolution (Faltung) theorem, [11] we

can rewrite (6) as

——

sm exp(–ti~+ ~21 Yl)
A = ~ ~ exp (j&z) —

-@r .=.* t=—w 4%2 + t2

. { 21mZ(t) + 2JmZ(t) ] exp (–jtx)dt (7)

with the following definition of the Fourier transform

lm.(t)= --& ~_~I,..(x)exp (jtx)dz= T {I~z(x)}. (8)

We shall assume that both (? and 1(x, z) have been

properly calculated such that Et= 2E.+:?E= vanish on

the metallic strips.

B. Power-Loss Relationships

To obtain the ohmic loss per unit length we shall as-

sume that the thickness of the ribbon is a few times the

skin depth and that the power carried by the bounded

wave P. is constant over a unit cell. The latter is a

reasonable approximation when the losses per unit cell

Pd are reasonably low [10]. We define

1 pd
P. = 10pr loglo e{ dB/unit length}, *, = --- –. .

d P.
(9)

Under the previous assumptions and the fact that

Hj I ~=. = O outside the metallic ribbon, we can express

pd as [9], [10]

(lo)

with a being the conductivity of the metal. The power

carried by the bounded wave is

P.=~Re {s smm )E X H*. idxdy . (11)
x-cc 11=-m

For a bounded wave (i.e., all a% are real), it is shown

in the Appendix that the electromagnetic fields in-

herently conserve energy and P. is constant.

C. Power Loss in Narrow Ribbons or Thin Cylinders

If a/h<<l, corresponding to narrow ribbons or thin

cylinders, the current and the vector potential have es-

sentially an x-directed component only [s ]– [6 ]. We
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shall further assume [6] that the current I. can be ex-

pressed by the following product form

1. = F(x)G(z) = F(*) ~ gm exp (j@mZ),
~.—w

2m7r
,&n=i3– — . (12)

d

Setting Lt, = O in (39), we obtain

The electromagnetic field can be derived from (15) and

(16) with a proper gauge [9] or, alternatively, [9] by

replacing in (3) A by A,, E by H, H by (— E), and p by

e. The boundary conditions must also be interchanged.

B. Power Loss in the Narrow-Slot Array

Again, we shall assume narrow slots a/h<<l, and that

the ground plane is a few skin depths thick. With I’ be-

ing similar in form to 1. in (12), we obtain P, by duality

where ~(t) is the Fourier transform of F(x). Utilizing

(9), (10), (12), and (13), we obtain the relative power

loss p, as

from (13) as

gnl’

“s

m (1 – y’) I f(ky) ] 2

-CC [(Pal – 2mr)’ + @(yZ – ~)]uz ‘y” (17)

with D = kd and t= ky. The power loss per unit cell is

III. THE SLOT ARRAY
~.=~sfmfd’’[l~.l’+ Md’11 dxdz

A. Analogous Formulation —m -d/2 U=o

As was previously stated, the slot array of Fig. 2(a) is
Using the appropriate dual expressions of (33) in the

the dual structure of the ribbon array of Fig. 1 (b). We
equation for pd and the identity ~~’ =am’-l-t’+-(kz –t’),

replace the vector potential A by A,, which is related to
one readily obtains

the electric field by
~ ~~wyfmlti(t)l’d~

edR.
Pd =

{
E=~v XA,. (15)

—m

e m (~’ – f’) I f(oy ~t
+ 5 lgml’f ‘—

}
. (18)

The vector potential is related to a fictitious magnetic ?n—cc —cc CYmz+ t2

current sheet 1s in the slot by Substituting (17) and (18) in (9) and utilizing Parseval’s

— theorem, we obtain the relative power loss p, as

—

A, =:$ with P, = 10P~ log10 e{ dB/unit length ]. The ratio of the
n .

sb
power losses per unit length of the ribbon and slot ar-

. exp (j&z) ~o[a.~(x – ,Y’~ + y2]1n’(x’)d.#. (16) rays is therefore

–/,

Ps P8.._. —

1

SI

h dF(z) 2
[ 5 lgml’]+D’k 5 lg.l’fm —

(1 – y’)\ j“(ky) 1’
—— dx

% .k d% ~.–.x m-m [(@ – 2mm)2 + D’(y’ – 1)] ‘y
— ——

J: IN.W*[ 5 I;2] - ‘“ ’20)
+—w
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In (14), (19), and (20), if sharp edges are assumed,

the expressions for the currents in the metal have

singularities that are nonsquare integrable with

Thus the first term in the numerator of (20) diverges

while the second term is finite. Even if the edges are

rounded, the second term is likely to be much smaller

than the first. Therefore, we shall approximate (20) by

IV. EVALUATION OF THE POWER LOSSES IN RIBBON

AND SLOT A~um

As seen from (14), pr is dependent on the current dis-

tribution and propagation constant @ which has been

studied previously [3 ]– [7 ]. Despite the different for-

mulations and assumptions, these results show similar

characteristics and can be used to obtain useful informa-

tion for our purposes, Present data are restricted to the

lowest order mode of the structures.

The current sheet in the ribbon array is of the form of

(12), and is taken as [3], [6], [7]

q)-—----~ -z
-a -a (I-8) a(l-8) a

‘w‘++-’ cl

1+
+2G -+

Fig. 3. Ribbon array. Current sheet distribution in the z direction.

and

responds to the cylindrical conductor array with uni-

form current distribution. We calculate the power loss

per unit cell from (10) and (22) as

R,lad
Pd = —- M2.Ma

2T
(24)

with M2 = 2 + cos 2H— 3 sin 2H/2H, H=: kh, U.,= 2ra/d,

/

b

~ = (COSkx – COS kk) —
27rz 27ra

v Cos——Cos—
d d

. exp (j(@ – m) (z/d)),

for I .y I < It and IzI <a. (22)

This current satisfies the edge conditions, i.e., 1(x = T h)

= O and

lim 1* (a – I ZI)–lJZ.
I?l+a

For this current, we find [6], [12]

F(z) = COS kx – COS kk

\

27ra()Pm–l Cos ~ , m>o

g?. =
27ra

()

(23)

,P_m Cos — , m<O

( d

where the P% are Legendre polynomials.

In order to avoid the singularities of the current at

z = T a, we shall assume that these edges are rounded in

the shape of a semicircle of radius tia, as shown in Fig. 3.

While the z variation of the current follows (22) in the

interval —a(l — 8) <z <a(l — 8), the current along the

semicircles is assumed to be constant and equal to the

current at z = (1 — ~)a. In this representation, ~ = 1 cor-

ikf3=~—
2408 1

_.— +—
2 Cos [Uo(l – a)] – Cos ‘zLo sin UO

(1 + cos 260)tan [ 1~(1 – 6) + sin uo

.ln l———
~~ J

———— ——.——...

(1+c0stio)tan[31-‘)l-sinuo
We obtain P. from (13) and (23) as

with

Ml = g \ gml’(ed – 2vur)
m—w

(25)

[

sin Hy 1
sin H 2

Cos H ——- — cos By —

J

m i7y H

O (1 – y2) [(~d – 2m~)2 + D’(Y2 – 1.)]3/zdy”

The relative power loss per unit length is therefore

23rM2M3
*,=L&

A

d

p; HD2M1 “
—-

e

(26)
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Fig. 4. Ratio of relative loss between the slot and ribbon array
versus h/k.

For the slot array of Fig. 2(a), we utilize (21), (23),

and (26) and obtain

1 – sin 2H/2H

PS = VPO with v = — . (27)
2 + cos 2H – 3 sin 2H/2H

Fig. 4 shows q. versus h/A. In the propagation band of

the lowest order mode (i.e., h/~ <O. 25), the narrow-slot

array is Iossier than the ribbon array.

A further and more instructive comparison can be

made with the TEIO mode in standard-rigid-rectangular

waveguides for which the power loss per unit length

is [10]

PW = 10pw log10 e{ dB/unit lengthj

Note from (26) and (28) that the losses in the ribbon

and slot arrays and the dominant waveguide mode have

the same frequency scaling characteristics.

To compare the relative losses of the various arrays,

we define the excess loss factors above the minimum

loss per unit length of rectangular waveguides as

L, = qL,. (29)

An important parameter in the analysis of the

bounded (slow) wave structure is the ratio of the phase

velocity of the bounded wave to the velocity of light,

01 ‘i I I 1 1

0.!4 0.15 0.16 0.!7 0.18 0.19 0.

h/A
o

Fig. 5. Excess loss factor L, for the ribbon array. h/d= 4; 2a/d
=0.415. Corresponding values of v/c are in brackets.

I I I I
:14 0.15 0,16 0.17 0,18 0.19 0.

h/X

!0

Fig. 6. Excess loss factor for the slot array. h/d= 4; 2a/d = 0.415
Corresponding values of v/c are in brackets.

v/c. The propagation constant of the bounded wave @

is related to v/c by ~d = kd/(v/c). We shall utilize pub-

lished values [3 ]– [6 ] of v/c in various structures and

calculate the corresponding excess loss factors from (29).
Fig. 5 shows the factor L, plotted as a function of h/A

for various ribbon geometries (see Figs. 1 (b) and 3).

The dispersion characteristics were taken from Ivanov

[6] and are assumed independent of ~. As can be seen,

L. increases with decreasing v/c. L, also increases with

the sharpness of the edges (lower values of ~). For a

given value of zJ/c, the lowest losses are incurred by the

metallic cylinder array (6= 1). As can be seen, the losses

of the ribbon arrays are comparable to the losses in

standard rectangular waveguides. The shaded area in

this and subsequent figures has been inserted for illus-

trative comparison with the standard rectangular wave-

guides. Note that, in contrast to standard rectangular

waveguides, the losses increase with frequency within

the operating band.

Fig. 6 shows the excess loss factors of the correspond-

ing slot arrays obtained by (27) and (29), which show

that the losses per unit length are somewhat higher- for

this structure.
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Fig. 7. Excess loss factor for metallic cylinders array. d/X=0.2.
Corresponding values of v/c are in brackets.
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Fig. 8. Excess 10SSfactor for metallic cylinders array. a/h= 0.05.
Corresponding values of z/c are in brackets.

Figs. 7 and 8 show the dependence of L, (or metallic-

cylinders array) upon the parameters a/h and d/k. For

a given value of v/c, L, increases with decreasing values

of a/h, while L, decreases with the decreasing values of

d/X (or D). The values of v/c were taken from Mail-

10UX’S [3] curves.

In the numerical computation of P, k (25), we have

observed that the zeroth-order (W= O) mode carried

practically all the power of the bounded wave. There-

153

fore, we can approximate Ml by

“s.—cc

[

sin By

1
sin h! 2

cos H — –-

(’-’’’;+(i)”- i’”
dy. (30)

From (24) with r%l and low values of ZLO, we obtain

M~=27r/z40 = d/a. Utilizing these results in (26), we ob-

tain

D
——— za’= (,), c)2a/1, ~

(31)

with Z being a function of 33 and not a very sensitive

function of the parameters a/h, D, and v/c. Although

(31) is a very approximate formula, it nevertheless in-

dicates the proper relation and range of the various

array parameters. Such a formula can serve as a guide-

line in exploring the proper combination of parameters

that will minimize the relative power losses.

V. CONCLUSION

In this work we have developed the necessary for-

malism for the evaluation of the relative power losses

in ribbon and slot arrays. The losses in these structures

obey the same frequency-scaling characteristics as

rectangular waveguides operated in the dominant mode.

The losses of the cylinder and ribbon arrays are found

to be comparable to rectangular waveguides. With a

proper choice of parameters, the losses in the slot ar-

rays can be brought to within a factor of 2 of the losses

in rectangular waveguides. Additional reductions of the

loss are desirable and may possibly result from special

shaping of the slots (or ribbons) and specific choice of

array dimensions.

Clearly, there will also be attenuation due to power

scattered by deviations from the ideal periodic geome-

try. However, whereas the latter can be reduced by

greater care in manufacture, the ohmic losses represent

a more intrinsic limitation.

APPENDIX

(

The electromagnetic field is obtained from (3) and

‘) as

l?OWTER CARRIED BY THE BOUNDED WAVE

IN RIBBON ARRAYS

{

–1, y>o
y 1) exp (–jtx)dt .

1, y<o

exp (–a~l yl)
exp ( —jtx)dt

am

y“>o

y<o
(32)
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Ez = ~r ~~~ exp (jL?~z)
s

exp (–a~l y\)
m [lm.(l – t’/k’) + &AJ/k’] – am exp ( —jtz) dt

— —Co

EU = & ~>~ exp (j/?..z) f
{

m [Lz – /3mL] exp (–am/ y 1) exp (–jtx)dt. ‘~’ f ~ ~
_— —m >

E, = %T ~~m exp (jp~z) sm[(1–&’/i!’)lmz+,f3mLd/k’]exp (–aml yl)
exp (—jkv)dt (33)

— —w am

where am= 4a~2+t2 and 1~~ and l~z are functions of the With

transform variable t.

The power carried by the bounded wave at plane z is
P. am — an B.

+- ‘m 1
Pm+ B. area. = an(pm + ,8.) a~(p~ + ,&J – i

P,=~Re {ssm }E X H*. Wuiy
—m ~ $ ~ (a. – an) = am – ~ ‘;Bn – ~~~pn

n

– ~- Re
{ss }

m

— “ [EZHV* – EUHz*]dxdy . (34) an;
—.x

Upon the substitution of (32) and (33) in (34), and in-

tegrating with respect to x and y, we obtain (s-l);:;;

p. ‘~Re~”~m~ ‘[~~~~)z]
= (~.’ – a.’) %2 — a~z am — an

— —

—wX,%——CC an (13m+ 8.) aJ& + p.) & + 6.

‘-’mz’nz*+$(’+&) ’mz’ns* ‘l(&~+am(;~~,&-%

B.(k’ – t’)

{

.—

k’a~a.

‘i[?-’l’mz’nz”+i Z’mzznz*}” ‘3’) terms
we obtain from (36) after discarding the imaginary

Pz = P, I,=O + Re [-~f:,tfodzl>~ s[~(:a:~.)z’l

( ,kz _ ~2)zm3j~a* + (tz — a~2)L&2
“(( 1*+ &@7mJn,*+ LA.*)} . (37)

With Using (32) and (33), (37) is reduced to

1 j(am – an)

am+ an = (h+ fiz)j(~m – A) ‘=plg=o+2{+Rel:_ifo’ExH*”~dxdz’l,=J ’38)
Since E, vanishes on the metallic strip, P. is independent

and of z. By setting % = n in (35), we obtain P, as

exp [j(,6m – ,8.)2] 1
s

.Cc 1

+ f z exp [j(Bm – ,fLJz’]dz’
P. = constant = ~ Re dt~—

j(& – 1%) = j(&ll – i%) o

~em ~2am3

[~n[(i%’ – t’) I L.x I;l (am’ + t’) I L, 12]

we obtain from (35) + t(k’ – t’ – a~2)lJ~z* + t&2JJ~Z*~. (39)

FH_:”so.,)7-.

(am – an)
P, = P, I.=,+ Re ‘ dz~ ~m~exp [j(/3m, – B.)z’l

(@n + AJk2

. fln(kz – tz)

{

—

aria% ‘mz’nz*+pm(l+ik) ’mz’n2* ‘“’(k: -’)’nz’nz”+’z’mz’nx”}l ’36)
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Microwave Integrated Oscillators for Broad-Band

High-Performance Receivers

HERMAN C. OKEAN, SENIOR MEMBER, IEEE, EUGENE W. SARD, SENIOR MEMBER, IEEE,

AND ROBERT H. PFLIEGER, MEMBER, IEEE

Absfract—The design and development of a variety of microwave

integrated circuit oscillators for use in integrated broad-band high-

performance receiving systems is described. Examples of various

thin-film microstrip oscillators directed to this application are pro-

vided including: 1) fixed-frequency Gunn-effect oscillators covering

C to Ku band; 2) X-band varactor-tuned Gunn-effect oscillators pro-

viding up to 15 percent tuning bandwidth; 3) S-band step-tuned tran-

sistor oscillator assembly with better than half-octave digital tuning

range; 4) L-band varactor-tuned transistor oscillator with rdmost an

octave tuning range.

I. lNTRODUCTION

T

HIS PAPER describes the design and develop-

ment of a variety of microwave integrated circuit

(M IC) oscillators for use in integrated broad-

band high-performance receivers. The role of these os-

cillators in such receivers, the impact of M IC technol-

ogy on their construction, and specific embodiments of

M IC oscillators operating from L to Ku band are in-

cluded.
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II. GENERAL ASPECTS OF l’b’l IC OSCILLATOR DESIGN

The application of Ill IC oscillators to broad-band

high-performance receivers is primarily as electronically

tunable local oscillators for repetitively swept [1],

step-scanned [2], [3], or adaptively tunable super-

heterodyne receiver channels. Of the various oscillator

types relevant to this application [1 ]– [8 J in the L- to

Ku-band frequency range, those which will be de-

scribed here include:

1) Fixed-frequency C- to KU-band Gunn-effect os-

cillators, which are designed for incorporation in a

corporate-switched combining array. This configura-

tion, therefore, constitutes a digitally addressed step-

tunable C- to K.-band LO assembly for step-scanned

superheterodyne receiver application.

2) Digitally addressed S-band step-tuned transistor

oscillator-driven LO assembly for step-scanned super-

heterodyne receiver application. A switched reactive

array constitutes the digitally tunable resonator for the

step-tuned transistor oscillator.

3) Varactor-tuned X-band GEOS which serve as

continuously tunable LOS for adaptively tunable super-

heterodyne receiver applications.

4) Varactor-tuned L-band transistor oscillator for


